Chapter 4
DC Biasing–BJTs
Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal.
Operating Point

The DC input establishes an operating or quiescent point called the Q-point.
The Three States of Operation

• **Active or Linear Region Operation**
 Base–Emitter junction is forward biased
 Base–Collector junction is reverse biased

• **Cutoff Region Operation**
 Base–Emitter junction is reverse biased

• **Saturation Region Operation**
 Base–Emitter junction is forward biased
 Base–Collector junction is forward biased
DC Biasing Circuits

- Fixed-bias circuit
- Emitter-stabilized bias circuit
- Collector-emitter loop
- Voltage divider bias circuit
- DC bias with voltage feedback
Fixed Bias
The Base-Emitter Loop

From Kirchhoff’s voltage law:

\[+V_{CC} - I_B R_B - V_{BE} = 0 \]

Solving for base current:

\[I_B = \frac{V_{CC} - V_{BE}}{R_B} \]
Collector-Emitter Loop

Collector current:

\[I_C = \beta I_B \]

From Kirchhoff’s voltage law:

\[V_{CE} = V_{CC} - I_C R_C \]
Saturation

When the transistor is operating in saturation, current through the transistor is at its *maximum* possible value.

\[
I_{C_{\text{sat}}} = \frac{V_{\text{CC}}}{R_C}
\]

\[
V_{CE} \approx 0 \text{ V}
\]
Load Line Analysis

The end points of the load line are:

\(I_{C_{\text{sat}}} \)
\[I_C = \frac{V_{CC}}{R_C} \]
\[V_{CE} = 0 \text{ V} \]

\(V_{C_{E\text{cutoff}}} \)
\[V_{CE} = V_{CC} \]
\[I_C = 0 \text{ mA} \]

The \(Q \)-point is the operating point:

- where the value of \(R_B \) sets the value of \(I_B \)
- that sets the values of \(V_{CE} \) and \(I_C \)
Circuit Values Affect the Q-Point

more …
Circuit Values Affect the Q-Point

more …
Circuit Values Affect the Q-Point
Emitter-Stabilized Bias Circuit

Adding a resistor (\(R_E\)) to the emitter circuit stabilizes the bias circuit.
Base-Emitter Loop

From Kirchhoff’s voltage law:

\[+ V_{CC} - I_E R_E - V_{BE} - I_E R_E = 0 \]

Since \(I_E = (\beta + 1)I_B \):

\[V_{CC} - I_B R_B - (\beta + 1)I_B R_E = 0 \]

Solving for \(I_B \):

\[I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} \]
Collector-Emitter Loop

From Kirchhoff’s voltage law:

\[I_E R_E + V_{CE} + I_C R_C - V_{CC} = 0 \]

Since \(I_E \approx I_C \):

\[V_{CE} = V_{CC} - I_C (R_C + R_E) \]

Also:

\[V_E = I_E R_E \]

\[V_C = V_{CE} + V_E = V_{CC} - I_C R_C \]

\[V_B = V_{CC} - I_R R_B = V_{BE} + V_E \]
Improved Biased Stability

Stability refers to a circuit condition in which the currents and voltages will remain fairly constant over a wide range of temperatures and transistor Beta (β) values.

Adding RE to the emitter improves the stability of a transistor.
Saturation Level

The endpoints can be determined from the load line.

\[V_{CE \text{cutoff}}: \]
\[V_{CE} = V_{CC} \]
\[I_C = 0 \text{ mA} \]

\[I_{\text{Csat}}: \]
\[V_{CE} = 0 \text{ V} \]
\[I_C = \frac{V_{CC}}{R_C + R_E} \]
Voltage Divider Bias

This is a very stable bias circuit.

The currents and voltages are nearly independent of any variations in β.
Approximate Analysis

Where $I_B << I_1$ and $I_1 \approx I_2$

$$V_B = \frac{R_2 V_{CC}}{R_1 + R_2}$$

Where $\beta R_E > 10 R_2$

$$I_E = \frac{V_E}{R_E}$$

$$V_E = V_B - V_{BE}$$

From Kirchhoff’s voltage law:

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$

$$I_E \approx I_C$$

$$V_{CE} = V_{CC} - I_C (R_C + R_E)$$
Voltage Divider Bias Analysis

Transistor Saturation Level

\[I_{\text{Sat}} = I_{\text{Cmax}} = \frac{V_{CC}}{R_C + R_E} \]

Load Line Analysis

Cutoff:

\[V_{CE} = V_{CC} \]
\[I_C = 0 \text{mA} \]

Saturation:

\[I_C = \frac{V_{CC}}{R_C + R_E} \]
\[V_{CE} = 0 \text{V} \]
Another way to improve the stability of a bias circuit is to add a feedback path from collector to base.

In this bias circuit the Q-point is only slightly dependent on the transistor beta, β.
Base-Emitter Loop

From Kirchhoff’s voltage law:

\[V_{CC} - I'_C R_C - I_B R_B - V_{BE} - I_E R_E = 0 \]

Where \(I_B \ll I_C \):

\[I'_C = I_C + I_B \approx I_C \]

Knowing \(I_C = \beta I_B \) and \(I_E \approx I_C \), the loop equation becomes:

\[V_{CC} - \beta I_B R_C - I_B R_B - V_{BE} - \beta I_B R_E = 0 \]

Solving for \(I_B \):

\[I_B = \frac{V_{CC} - V_{BE}}{R_B + \beta (R_C + R_E)} \]
Collector-Emitter Loop

Applying Kirchoff’s voltage law:

\[I_E + V_{CE} + I'_C R_C - V_{CC} = 0 \]

Since \(I'_C \cong I_C \) and \(I_C = \beta I_B \):

\[I_C (R_C + R_E) + V_{CE} - V_{CC} = 0 \]

Solving for \(V_{CE} \):

\[V_{CE} = V_{CC} - I_C (R_C + R_E) \]
Base-Emitter Bias Analysis

Transistor Saturation Level

\[I_{C_{sat}} = I_{C_{max}} = \frac{V_{CC}}{R_C + R_E} \]

Load Line Analysis

Cutoff:

\[V_{CE} = V_{CC} \]
\[I_C = 0 \text{ mA} \]

Saturation:

\[I_C = \frac{V_{CC}}{R_C + R_E} \]
\[V_{CE} = 0 \text{ V} \]
Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.
Switching Circuit Calculations

Saturation current:

\[I_{C\text{sat}} = \frac{V_{CC}}{R_C} \]

To ensure saturation:

\[I_B > \frac{I_{C\text{sat}}}{\beta_{dc}} \]

Emitter-collector resistance at saturation and cutoff:

\[R_{\text{sat}} = \frac{V_{CE\text{sat}}}{I_{C\text{sat}}} \]

\[R_{\text{cutoff}} = \frac{V_{CC}}{I_{CEO}} \]
Switching Time

Transistor switching times:

\[t_{\text{on}} = t_r + t_d \]

\[t_{\text{off}} = t_s + t_f \]
Troubleshooting Hints

• Approximate voltages
 – $V_{BE} \approx 0.7 \text{ V}$ for silicon transistors
 – $V_{CE} \approx 25\% \text{ to } 75\% \text{ of } V_{CC}$

• Test for opens and shorts with an ohmmeter.

• Test the solder joints.

• Test the transistor with a transistor tester or a curve tracer.

• Note that the load or the next stage affects the transistor operation.
PNP Transistors

The analysis for pnp transistor biasing circuits is the same as that for nnp transistor circuits. The only difference is that the currents are flowing in the opposite direction.